The Generalized Reed-Muller codes and the radical powers of a modular algebra

نویسنده

  • Harinaivo Andriatahiny
چکیده

First, a new proof of Berman and Charpin’s characterization of the Reed-Muller codes over the binary field or over an arbitrary prime field is presented. These codes are considered as the powers of the radical of a modular algebra. Secondly, the same method is used for the study of the Generalized Reed-Muller codes over a non prime field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Generalized Reed-Muller codes in a modular group algebra

First we study some properties of the modular group algebra Fpr [G] where G is the additive group of a Galois ring of characteristic pr and Fpr is the field of p r elements. Secondly a description of the Generalized Reed-Muller codes over Fpr in Fpr [G] is presented.

متن کامل

Construction of Self-Dual Radical 2-Codes of given Distance

A linear code C is called a group code if C is an ideal in a group algebra K[G] where K is a ring and G is a finite group. Many classical linear error-correcting codes can be realized as ideals of group algebras. Berman [1], in the case of characteristic 2, and Charpin [2], for characteristic p = 2, proved that all generalized Reed–Muller codes coincide with powers of the radical of the group a...

متن کامل

Generators and weights of polynomial codes

Introduction. Several authors have established that many classical codes are ideals in certain ring constructions. Berman [3], in the case of characteristic two, and Charpin [5], in the general case, proved that all generalized Reed-Muller codes coincide with powers of the radical of the quotient ring A = Fq[x1, . . . , xn]/(x q1 1 − 1, . . . , xn n − 1), where Fq is a finite field, p = charFq ...

متن کامل

New descriptions of the weighted Reed-Muller codes and the homogeneous Reed-Muller codes

We give a description of the weighted Reed-Muller codes over a prime field in a modular algebra. A description of the homogeneous Reed-Muller codes in the same ambient space is presented for the binary case. A decoding procedure using the Landrock-Manz method is developed.

متن کامل

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1601.07633  شماره 

صفحات  -

تاریخ انتشار 2016